Directive Effects in Benzylic Hydrogen Atom Abstraction. Part VI.¹ Halogenation of Arethyl Fluorides

By Kheng H. Lee,* S. E. Loke, and G. H. Yeoh, Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia

The relative rates of halogenation of $XC_{\theta}H_{4}CH_{2}CH_{2}F$ with N-bromosuccinimide in CCl₄ at 80[•] and with sulphuryl chloride in benzene at 40° are correlated by the Hammett equation to give $p^+ - 1.43$ (r0.996) and p = 0.96 (r0.985). respectively. The different nature of the transition states of atomic bromine and the benzene-complexed chlorine atom with the substrates $XC_{g}H_{4}CH_{2}Y$ previously noted has been consistently observed. Deuterium isotope effects in the N-bromosuccinimide bromination of PhCHDY and PhCD₂Y have been measured for Y = Ph, CH₂Cl, CH₂F, and CI and these values are related to the relative reactivity of the undeuteriated compounds.

RECENT studies 1-4 on the halogenation of the series $XC_{6}H_{4}CH_{2}Y$, where Y = Cl, H, $CH_{2}Cl$, and Me with N-bromosuccinimide (NBS) in carbon tetrachloride and with sulphuryl chloride in benzene show that nuclear substituent effects as measured by the relative rate constants k/k_0 obey the $\rho\sigma^+$ relationship for bromination whereas the po relationship prevails for chlorination in benzene solution. These results have demonstrated that either σ or σ^+ constants can be adequately used in correlating data in benzylic hydrogen atom abstraction by the radicals in these halogenation reactions. It was shown¹ that $Y = CH_{2}F$ has a strong deactivating effect on the reactivity of the phenethyl fluoride compared with toluene towards benzylic halogenation by ¹ Part V, K. H. Lee and T. O. Teo, J.C.S. Perkin II, 1973, 1617.

these two reagents. We now report on the investigation of the polar effects in the halogenation of the series XC₆H₄CH₂CH₂F which should be an excellent system to test the significance in the choice of σ and σ^+ constants in the Hammett equation. The deuterium isotope effects in the NBS bromination of PhCHDY and $PhCD_2Y$ where Y = Cl, CH_2Cl , CH_2F , and Ph were measured, and these results and other available data correlated with the relative reactivity values in PhCH₂Y.

EXPERIMENTAL

Materials .-- Substituted phenethyl alcohols² were converted into the tosylates which were in turn transformed ² to the fluorides $XC_6H_4CH_2CH_2F$ in 42-55% yield after

- K. H. Lee, J.C.S. Perkin II, 1973, 693.
 K. H. Lee and T. O. Teo, J.C.S. Perkin II, 1973, 689.
 T. P. Low and K. H. Lee, J. Chem. Soc. (B), 1970, 535.

removal of olefinic material by concentrated H₂SO₄ extraction. The pure (g.l.c.) fluorides have the following constants: X, b.p. at 35 mmHg, and $n_{\rm D}^{25}$: H, $72.5-73^{\circ}$, 1.4900 (lit.,⁵ b.p. 55-56° at 12 mmHg); p-Bu^t, 124-125°, 1.4892 (lit., 6 b.p. 83-85° at 4 mmHg, 1.4897); p-Me, 89-90°, 1.4885 (Found: C, 78.5; H, 7.7; F, 13.7. C₉H₂₁F requires C, 78.3; H, 7.9; F, 13.8%); p-Cl, 107-108°, 1.5110 (lit., 5 b.p. 79-80° at 9 mmHg); m-Cl, 106-107°, 1.5116 (Found: C, 60.7; H, 5.0; F, 11.8. C_gH_gClF requires C, 60.6; H, 5.1; F, 12.0%); p-F, 79-80°, 1.4668 (Found: C, 67.9; H, 5.4; F, 26.7. C₈H₈F₂ requires C, 67.6; H, 5.7; F, 26.7%): m-F, 79-80°, 1.4688 (Found: C, 67.9; H, 5.75; F, 27.1. C₈H₈F₂ requires C, 67.1; H, 5.7; F, 26.7%); p-Br, 67-68.5° at 1 mmHg, 1.5370 (Found: C, 47.4; H, 4.0; Br, 39.4; F, 9.5. C₈H₈BrF requires C, 47.3; H, 3.9; Br, 39.4; F, 9.4%). The n.m.r. spectra (CCl₄) of all these fluorides show the four sets of triplets found in PhCH₂CH₂F which has § 2.62-2.85(t), 3.00-3.20(t), 4.00-4.22(t), 4.78-5.00(t), and 7.12(s).

Bromination of phenethyl fluoride with NBS yielded 92% PhCHBrCH₂F, b.p. 78—80° at 1 mmHg, $n_{\rm D}^{25}$ 1.5484 (Found: C, 47.4; H, 3.9; F, 9.2; Br, 39.0. C,H,BrF requires C, 47.3; H, 3.9; F, 9.3; Br, 39.4%), 8 4.22-4.35 (1H, t), 4.80–5.08 (2H, m), and 7.30 (5H, s). Reduction of PhCHO and PhCO₂Me with lithium tetradeuterioaluminate (Merck; deuterium content >99%) gave PhCHDOH and PhCD₂OH, respectively, which were treated with SOCl₂ to give PhCHDCl, b.p. 87-89° at 35 mmHg, np25 1.5354 (lit.,⁷ b.p. 68—70° at 16 mmHg, $n_{\rm p}^{20}$ 1.5385), and PhCD₂Cl, b.p. 84—86° at 35 mmHg, $n_{\rm p}^{25}$ 1.5380 (lit.,⁷ b.p. 75—77° at 22 mmHg, $n_{\rm p}^{20}$ 1.5377). [α, α^{-2} H₂]Diphenylmethane,³ n_n^{25} 1.5732, was prepared as previously described. Redistilled $Bu_{3}^{n}SnCl$ (15.6 g) in ether was added dropwise to $LiAlD_4$ (2 g) in ether followed by pure PhCHBrCH₂Cl (19.7 g) in ca. 0.25 h, and the mixture re-fluxed a further 1 h. The product was isolated in the usual manner by distillation. Redistillation gave 53% PhCHDCH₂Cl, b.p. 99-101° at 35 mmHg, n_D²⁵ 1.5272, δ 2.94 (m, CHD), 3.57 (d, CH₂), and 7.16(s). $[\alpha^{-2}H]$ -β-Fluoroethylbenzene, b.p. 74-76° at 35 mmHg, $n_{\rm p}^{25}$ 1.4898, $\delta 257-3.30(m)$, 4.03-4.33(m), 4.83-5.05(m), and 7.17(s), was similarly prepared from the bromofluoride.

Treatment of $[\alpha, \alpha^{-2}H_{2}]$ benzylmagnesium chloride with solid CO₂ in ether gave 76% PhCD₂CO₂H which on reduction with LiAlH₄ yielded 76% PhCD₃CH₂OH, b.p. 122-123° at 35 mmHg, $n_{\rm D}^{25}$ 1.5206. This alcohol (6.8 g) was converted into the tosylate in the usual manner. The crude tosylate was treated ⁵ with KF in ethylene glycol to give PhCD₂CH₂F (1.71 g), b.p. 74-75° at 35 mmHg, $n_{\rm D}^{25}$ 1.4902, δ (CCl₄) 4.09(d), 4.87(d), and 7.14(s). All the deuteriated compounds gave single peaks on g.l.c. and from their n.m.r. spectra appeared not to contain undeuteriated isomers. All competing substrates and g.l.c. and n.m.r. standards used were >99% pure by g.l.c. analysis. Other materials were purified in the usual manner.¹⁻⁴

Competitive Reactions.—These were carried out as previously described.¹⁻⁴ In the NBS brominations at 80° the competing substrates were $0{\cdot}2{\mbox{\scriptsize M}}$ each in $\mbox{\rm CCl}_4$ with NBS (40 mol %). For chlorination at 40° with SO₂Cl₂

* For details of Supplementary Publications see Notice to Authors No. 7 in J.C.S. Perkin II, 1973, Index issue. Items less than 10 pp. are supplied as full-size copies.

⁵ C. H. Depuy and C. A. Bishop, J. Amer. Chem. Soc., 1960, 82, 2535.

all reactants were 0.4 m in benzene and irradiation times were 0.4-1.2 h to allow 25-40% consumption of the competing substrates. A 300 W sunlamp was used as light source for all reactions. All g.l.c. estimations 1-3 of the unconsumed substrates were subject to errors of $\leqslant \pm 2\%$, and n.m.r. determinations ¹⁻³ were reproducible to $\leq \pm 4\%$. In the bromination reactions the total substrates consumed were usually 96-102% of the NBS used. The results, calculated by the relative rate equation,⁸ are given in detail in Supplementary Publication No. SUP 21162 (7 pp.) * and summarised in Table 1.

Measurements of Deuterium Isotope Effects.--Intramolecular deuterium isotope effects in NBS brominations of PhCHDCH₂Cl and PhCHDCl were estimated by a combination of g.l.c. and n.m.r. methods. The $k_{\rm H}/k_{\rm D}$ value in PhCHDCH₂F could not be measured by these methods as neither PhCDBrCH₂F nor PhCHBrCH₂F could be estimated cleanly by n.m.r. without other interfering chemical shifts. The $k_{\rm H}/k_{\rm D}$ values in NBS bromination of PhCD₂CH₂F, Ph₂CD₂, and PhCD₂Cl relative to the undeuteriated isomers were measured by the usual competitive technique using suitable standard substrates with which the deuteriated and undeuteriated materials were compared. The results are summarised in Table 2.

RESULTS AND DISCUSSION

SO₂Cl₂ Chlorination.—The relative reactivity of the benzylic hydrogen atoms in XC₆H₄CH₂CH₂F toward SO_2Cl_2 in benzene at 40° was measured against *m*-chlorotoluene, toluene, and phenethyl chloride as standards. For X = p- and *m*-chloro it was necessary to use phenethyl chloride as competing substrate as the product PhCHClCH₂F interfered in the g.l.c. estimation of ClC₆H₄CH₂CH₂F if PhCH₂CH₂F was used as standard substrate. For X = p-Me *m*-ClC₆H₄Me was used as standard since the other product p-ClCH₂C₆H₄CH₂CH₂F from the β -fluoride has chemical shift at δ ca. 4.10 downfield from the CH_2Cl value in $m-ClC_6H_4CH_2Cl$. The amount of attack at the p-Me group was estimated by the n.m.r. method and used to correct for the relative reactivity value for the p-Me substituent. For X =p-Bu^t toluene was used as standard as a combination of g.l.c. and n.m.r. methods was employed to analyse the substrates and the products such as $PhCH_2Cl$ (at $\delta 4.10$) and p-FCH₂CH₂C₆H₄CMe₂CH₂Cl (singlet at δ 3.31 for CH_2Cl). The relative reactivity value for p-Bu^t- $C_6H_4CH_2CH_2F$ was corrected for attack at the p-Bu^t substituent and is related to the unsubstituted β -fluoride via the value of 0.50 reported ³ for $k(m-ClC_6H_4Me/$ PhMe).

The results of competitive chlorination of XC₆H₄CH₂- CH_2F with SO_2Cl_2 are given in Table 1. Correlation of the data by the Hammett equation using standard statistical methods ⁹ shows that $\rho = -0.96 \pm 0.04$ $(r \ 0.985)$ and $\rho^+ = -0.82 \pm 0.08$ $(r \ 0.948)$. The better correlation with the σ constants of McDaniel and

⁶ U.S.P. 2,998,460/1961 (Chem. Abs., 1962, 56, 409f).

 ⁷ S. Meyerson, P. N. Rylander, E. L. Eliel, and J. D. Mc-Collum, *J. Amer. Chem. Soc.*, 1959, **81**, 2606.
 ⁸ K. H. Lee, *Tetrahedron*, 1968, **24**, 4793.

⁹ H. H. Jaffe, Chem. Rev., 1953, 53, 191.

Brown ¹⁰ than with the σ^+ constants of Brown and Okamoto¹¹ is consistent with data previously reported ¹⁻³ for Y = Cl, H, CH₂Cl, Ph, and Me in the

TABLE 1							
Substituent effects in the halogenation a of $XC_8H_4CH_2CH_2F$							
		k/k_0					
		NBS		SO ₂ Cl ₂			
\mathbf{x}		$(80^{\circ}; CCl_{4})$		(40°; C ₆ H ₆)			
<i>p</i> -Me	3	·14 * -+- 0·07]	$1.52 * \pm 0.05$			
∕∂-Bu ^t		2.42 + 0.02	1	1.53 * + 0.02			
H		1.00		1.00			
D-F		0.90 ± 0.01		0.96 ± 0.04			
p-Cl		0.73 + 0.01		0.75 + 0.02			
b-Br		0.65 + 0.02					
m-F		0.32 + 0.01		0.46 + 0.01			
m-Cl		0.28 ± 0.01		0.42 ± 0.01			
	o —	-1.64 + 0.10	· _	-0.96 + 0.04			
	r	0.970		0.985			
	o+ —	1.43 ± 0.04	_	-0.82 ± 0.08			
	r	0.996		0.948			

* Corrected for halogenation at substituent.

^a Based on triplicate experiments given in Supplementary Publication No. SUP 21162.

series $XC_{a}H_{d}CH_{2}Y$ where the benzene-complexed chlorine atom 1-3 is the principal hydrogen abstracting species. The magnitude of the ρ value of -0.96 compared with the values of -0.76 and -0.83 for Y = CH₂Cl and H, respectively, is not unexpected since the reactivity values ¹ (per α -hydrogen atom) are 0.54, 0.72, and 1.00 for PhCH₂CH₂F, PhCH₂CH₂Cl, and PhMe, respectively.

NBS Bromination.—Bromination of phenethyl fluoride gave a high yield of PhCHBrCH₂F. Except for X =p-Me all competitive brominations with NBS were carried out using XC₆H₄CH₂CH₂F versus PhCH₂CH₂F, and analysis for unconsumed substrates (g.l.c.) showed good material balance based on the amount of NBS used. For X = p-Me p-chlorotoluene was used as a standard substrate and the reactivity value in $p-MeC_{p}$ -H₄CH₂CH₂F was corrected for formation of p-BrCH₂- $C_6H_4CH_2CH_2F$. The results are in Table 1. Treatment of the data by the Hammett equation shows that $\rho^+ = -1.43 \pm 0.04$ (r 0.996) and $\rho = -1.64 \pm 0.10$ (r 0.970). The better correlation with σ^+ constants is consistent with previous reports $^{1-4}$ in the series XC_{6} - H_4CH_9Y where Y = H, Me, CH_2Cl , Cl, and $CH=CH_2$. The magnitude of the ρ value of -1.43 for XC₆H₄-CH₂CH₂F is the largest found so far compared with the values of -1.35 to -1.38 for XC₆H₄CH₃,^{1,12} -1.30 for XC₆H₄CH₂Cl,¹ and -1·10 for XC₆H₄CH₂CH₂Cl.²

In order to obtain a clear understanding of the relationship between the ρ values in $XC_6H_4CH_2Y$ and the reactivity values in PhCH₂Y the deuterium isotope effects in the NBS bromination of a number of substrates, PhCHDY and PhCD₂Y, have been measured and are summarised in Table 2 together with data

¹⁰ D. H. McDaniel and H. C. Brown, J. Org. Chem., 1958, 23, 420. ¹¹ H. C. Brown and Y. Okamoto, J. Amer. Chem. Soc., 1958, 80, 4979.

previously reported.¹³ For PhCH₂CH₂F and PhCD₂-CH_oF *m*-fluorobenzyl chloride was used as standard substrate in the competitive brominations at 80° . For PhCD₂CH₂F versus m-FC₆H₄CH₂Cl good material balance was achieved by a combination of g.l.c. and n.m.r. analyses. The high value of 5.71 ± 0.12 found for the intermolecular deuterium isotope effect compared with the $k_{\rm H}/k_{\rm D}$ values of 4.86 and 5.11 found ¹³ for PhCH₂D and PhCHD₂, respectively, suggests that the energy of activation in the rate-determining step of hydrogen abstraction by atomic bromine is higher in PhCH₂-CH₂F than in PhCH₃. This is reflected in the reactivity

TABLE 2

Relationship between $k_{\rm H}/k_{\rm D}$ values and relative reactivity in benzylic bromination with NBS in CCl_4 at 80°

		Reactivity of	
		undeuteriated	ρ+ Values in
	$k_{\mathbf{H}}/k_{\mathbf{D}}$	compounds "	ŻС₅Н₄СН₂Ү
PhCHDCH ₃	$2\cdot 67\pm 0\cdot 04$ b	23	-0.86 °
Ph ₂ CD ₂	2.93 ± 0.06	18	-0·93 ° (e)
PhCHDCH ₂ Cl	3.86 ± 0.14	1.44	-1·10 d
PhCH ₂ D	4.86 ± 0.03 b	1.00	-1·38 °
PhCHD ₂	$5\cdot11\pm0\cdot02$ b	1.00	— 1·35 "
PhCD ₂ CH ₂ F	5.71 ± 0.12	0.69	-1.43
PhCHDCl	6.14 ± 0.22	0.57	-1·30 ª
PhCD ₂ Cl	$6 \cdot 13 \pm 0 \cdot 11$	0.57	
PhCH ₂ Bu ^t		0.68 f	-0.75^{f}
^a From ref. 1.	^b From ref. 13	at 77°. ° From	Table 4 of ref.
4. ^d From ref.	2. • From re	f. 12. ^f At 70°	, from W. D.
Totherow and G	G. J. Gleicher,	J. Amer. Chem.	Soc., 1969, 91

7150.

value of 0.69:1.00 and also in the magnitude of the ρ values (see Table 2). Since there is no steric effect to the approach of the bromine atom to the benzylic hydrogen atoms in PhCH₂CH₂F the higher energy of activation is due to deactivation of these hydrogen atoms by purely inductive electron withdrawal by the fluorine atom. The low reactivity of 0.68 in PhCH₂Bu^t can be attributed to steric hindrance to the approach of atomic bromine to the benzylic hydrogen atoms whereas the ρ value of -0.75 for $XC_6H_4CH_2Bu^t$ appears to be in the normal range compared with XC₆H₄CH₂Me $(\rho = -0.86)$ for which the parent compound PhCH₂Me has a relative reactivity of 23.

The intramolecular $k_{\rm H}/k_{\rm D}$ value of 6.14 found in PhCHDCl is practically identical to the intermolecular value of 6.13 estimated from the competitive NBS bromination of PhCH₂Cl and PhCD₂Cl with m-FC₆H₄-CH₂Cl as standard substrate. The large deuterium isotope effect is in agreement with the low reactivity value¹ found for PhCH₂Cl towards NBS. Examination of the results in Table 2 shows the qualitative trend in the relationship between $k_{\rm H}/k_{\rm D}$ values in PhCH₂Y and the relative reactivity towards atomic bromine, and also with the polar effects as measured by p values in $XC_6H_4CH_2Y$.

[4/961 Received, 16th May, 1974]

 ¹² C. Walling, A. L. Rieger, and D. D. Tanner, J. Amer. Chem. Soc., 1963, 85, 3129.
 ¹³ K. B. Wiberg and L. H. Slaugh, J. Amer. Chem. Soc., 1958, Control of C

^{80, 3033.}